skip to main content


Search for: All records

Creators/Authors contains: "de Veciana, Gustavo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 30, 2024
  2. Free, publicly-accessible full text available May 17, 2024
  3. The recent developments in Federated Learning (FL) focus on optimizing the learning process for data, hardware, and model heterogeneity. However, most approaches assume all devices are stationary, charging, and always connected to the Wi-Fi when training on local data. We argue that when real devices move around, the FL process is negatively impacted and the device energy spent for communication is increased. To mitigate such effects, we propose a dynamic community selection algorithm which improves the communication energy efficiency and two new aggregation strategies that boost the learning performance in Hierarchical FL (HFL). For real mobility traces, we show that compared to state-of-the-art HFL solutions, our approach is scalable, achieves better accuracy on multiple datasets, converges up to 3.88× faster, and is significantly more energy efficient for both IID and non-IID scenarios. 
    more » « less
    Free, publicly-accessible full text available May 9, 2024
  4. Abstract—Network slicing is a key capability for next gen- eration mobile networks. It enables infrastructure providers to cost effectively customize logical networks over a shared infrastructure. A critical component of network slicing is resource allocation, which needs to ensure that slices receive the resources needed to support their services while optimizing network effi- ciency. In this paper, we propose a novel approach to slice-based resource allocation named Guaranteed seRvice Efficient nETwork slicing (GREET). The underlying concept is to set up a con- strained resource allocation game, where (i) slices unilaterally optimize their allocations to best meet their (dynamic) customer loads, while (ii) constraints are imposed to guarantee that, if they wish so, slices receive a pre-agreed share of the network resources. The resulting game is a variation of the well-known Fisher mar- ket, where slices are provided a budget to contend for network resources (as in a traditional Fisher market), but (unlike a Fisher market) prices are constrained for some resources to ensure that the pre-agreed guarantees are met for each slice. In this way, GREET combines the advantages of a share-based approach (high efficiency by flexible sharing) and reservation-based ones (which provide guarantees by assigning a fixed amount of resources). We characterize the Nash equilibrium, best response dynamics, and propose a practical slice strategy with provable convergence properties. Extensive simulations exhibit substantial improvements over network slicing state-of-the-art benchmarks. 
    more » « less
  5. We propose and evaluate a learning-based framework to address multi-agent resource allocation in coupled wireless systems. In particular we consider, multiple agents (e.g., base stations, access points, etc.) that choose amongst a set of resource allocation options towards achieving their own performance objective /requirements, and where the performance observed at each agent is further coupled with the actions chosen by the other agents, e.g., through interference, channel leakage, etc. The challenge is to find the best collective action. To that end we propose a Multi-Armed Bandit (MAB) framework wherein the best actions (aka arms) are adaptively learned through online reward feedback. Our focus is on systems which are "weakly-coupled" wherein the best arm of each agent is invariant to others' arm selection the majority of the time - this majority structure enables one to develop light weight efficient algorithms. This structure is commonly found in many wireless settings such as channel selection and power control. We develop a bandit algorithm based on the Track-and-Stop strategy, which shows a logarithmic regret with respect to a genie. Finally through simulation, we exhibit the potential use of our model and algorithm in several wireless application scenarios. 
    more » « less
  6. We consider a collection of distributed sensor nodes periodically exchanging information to achieve real- time situational awareness in a communication constrained setting, e.g., collaborative sensing amongst vehicles to improve safety-critical decisions. Nodes may be both con- sumers and producers of sensed information. Consumers express interest in information about particular locations, e.g., obstructed regions and/or road intersections, whilst producers broadcast updates on what they are currently able to see. Accordingly, we introduce and explore optimiz- ing trade-offs between the coverage and the space-time in- terest weighted average “age” of the information available to consumers. We consider two settings that capture the fundamental character of the problem. The first addresses selecting a subset of producers that maximizes the cover- age of the consumers preferred regions and minimizes the average age of these regions given that producers provide updates at a fixed rate. The second addresses the mini- mization of the interest weighted average age achieved by a fixed subset of producers with possibly overlapping cov- erage by optimizing their update rates. The first problem is shown to be submodular and thus amenable to greedy op- timization while the second has a non-convex/non-concave cost function which is amenable to effective optimization using the Frank-Wolfe algorithm. Numerical results exhibit the benefits of context dependent optimization information sharing among obstructed sensing nodes. 
    more » « less